

Baltic Clemistry Competition 4TH ROUND, ANSWERS

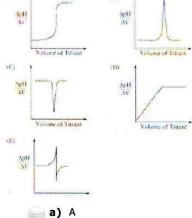
Test name: Baltic Chemistry Competition 2010 4th round

This test is worth: 60 points					
Select multiple choice answers with a cross or tick:					
Only select one answer Select multiple answers					
	a) I				
	● b) Ⅱ				
	c) III				
	(a) All are equal.				
	e) Not possible to determine, need more information.				
(Q2) The bond energy of hydrogen bromide is the change in enthalpy	for the reaction:			
	a) 1/2 H ₂ (g) + 1/2Br ₂ (l) -> HBr(g)				
	b) $H_2(g) + Br_2(I) -> 2HBr(g)$				
	c) $HBr(g) -> H(g) + Br(g)$				
	d) $HBr(g) -> 1/2H_2(g) + Br(g)$				
	e) $HBr(g) \rightarrow 1/2H_2(g) + 1/2Br_2(g)$				
ŀ	Q3) When 0.050 mol of HCl is reacted with 0.050 mol of NaOH in 50 by 13.7° C. Calculate the molar enthalpy of neutralization: HCl(aq) + NaOH(aq) -> NaCl(aq) + H ₂ O(l) The heat capacity of system is 209.2 J/ $^{\circ}$ C.	.0 mL water, the temperature of water increases			
	a) -57300 J				
	b) -2870 J				
	c) +2870 J				
	d) +57300 J				
	e) +115000 J				

- Q4) The enthalpy change for the following processes has the sign different from the rest?
 - a) Na(g) -> Na(s)
 - **b)** Na⁺(g) + e -> Na(g)

Q5) Calculate enthalpy change in kJ for the reaction: C2H4 + HCI -> C2H5CI

Use following table: Bond | CI-CI | C-CI | C-C | C-O | C-H | H-CI | C=C | H-H kJ/mol | 243 | 326 | 347 | 351 | 414 | 431 | 619 | 435

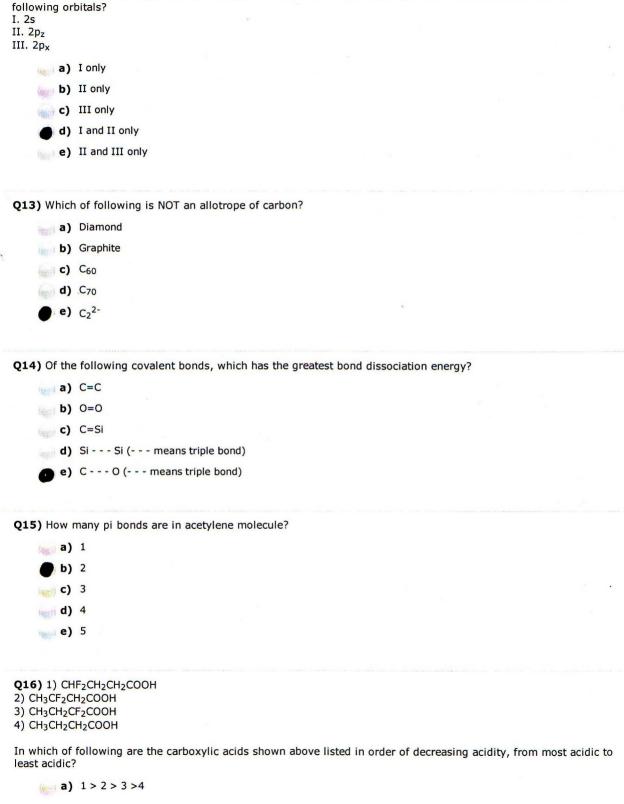

- a) -451 **b)** +310 **c)** -309
- d) -37 e) -468

Q6) The enthalpy changes for two different hydrogenation reactions of C2H2 are: C2H2 + H2 -> C2H4 H1

 $C_2H_2 + 2H_2 -> C_2H_6 H_2$ Which expression represents the enthalpy change for the reaction below? $C_2H_4 + H_2 -> C_2H_6 H=?$

- a) H₁ + H₂ **b)** H₁ - H₂
- c) H2 H1
- d) -H₁ H₂
- e) H₁ * H₂

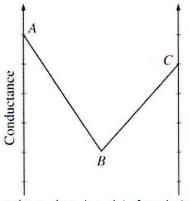
Q7) In plotting data from the potentiometric titration of strong acid with strong base, a plot of the change in pH per change in volume of titrant (DpH/DV) versus volume of titrant will have which of following shapes?


- **c)** C

- **d)** D
- e) E
- **Q8)** The isomeric ketones shown bellow can be distinguished from each other by number of signals in ¹³C NMR spectra. These ketones should show which of the following numbers of signals?

- a) I 3; II 5
 - **b)** I 3; II 7
- **c)** I 4; II 7
- d) I 4; II 3
- e) I 5; II 7
- **Q9)** A weak acid, HA, has a Ka of 1.00*10-5. If 0.100 mole of this acid is dissolved in one liter of water, the percentage of acid dissociated at equilibrium is closest to:
 - a) 0.100 %
 - **b)** 1.00 %
 - c) 99.0 %
 - **d)** 99.9 %
 - e) 100 %
- Q10) What kind of reactive intermediate is formed in the reaction shown bellow?
 - a) Carbanion
 - b) Carbocation
 - c) Bromonium ion
 - **d)** Bromide ion
 - e) Free radical
- **Q11)** For the reaction $O_3(g) \rightarrow 1.5O_2(g)$ Gibbs energy change is minus 163 kJ/mol. What is the value of equilibrium constant, K_0 , for this reaction?
 - **a)** $K_p > 1.0$

16 = - RTluk = -163 000 F


- **b)** K_p = 1.0
- **c)** 0 < K_p < 1.0
- **d)** $K_p = 0$
- **e)** K_p < 0

Q12) In an isolated hydrogen atom, the $2p_x$ orbital has the same principal quantum number, n, as which of

b	1 > 4 > 3 > 2				
(c)	3 > 2 > 1 > 4				
d)	3 > 4 > 1 > 2	r			
e	4 > 1 > 2 > 3				
			O THE CONTRACTOR OF THE PARTY O		
	ming that air is approximately ity of <mark>air at</mark> 0oC and 1 atmosp		0% oxygen by volun	ne, which of the followi	ng is closest
a)	0.01 g/L				
b	0.1 g/L				
● c	1 g/L				
d	10 g/L				
e	100 g/L				
reaction? [A] [B] 0.50 M 0 0.50 M 1 0.25 M 0 1.00 M 1	nitial rates given bellow were Initial Rate 50 M 10 M/s 00 M 20 M/s 50 M 5 M/s 00 M 40 M/s	e determined for react	ion A + 2B -> AB ₂ .	What is the overall rate	law for this
	$Rate = k[A]^2[B]^2$				
	$Rate = k[A]^2[B]$				
	$Rate = k[A][B]^2$				
30000	Rate = k[A][B]				
е	Rate = k				
DeltaH for the followi	+ CO ₂ (g) <=> 2CO(g) the reaction shown above is g ng statements about the perce It increases as amount of C(s It increases as temperature i	ent yield of CO(g) is to some significations.	uming DeltaH is inderue?	ependent of temperatur	e, which of
c C	It decreases as temperature	increases.			
d	It doubles when initial partial	pressure of CO ₂ is dou	bled.		
е	It increases when total pressi	ure of reaction system	ncreases.		
Q20) At st	andard temperature and press	sure, all of the followi	ng compounds exist	in the gas state EXCEP	т:
a					
) HBr				
	NH ₃				
) BH ₃				
) LiH				

Q21) The e	ectron configuration of Co	in $[Co(NH_3)_6]Cl_3$ is	5:		
a)	$[Ar]4s^23d^7$				
b)	[Ar]4s ² 3d ⁴				
c)	[Ar]3d ⁹				
(d)	[Ar]3d ⁷				
• e)	[Ar]3d ⁶				
	00 g sample of a pure, wea			0 mL and 40.0 mL w	hen it is titrated
	1 NaOH. What is the relativ	e molar mass of the	e weak acid?		
a)					
	150				
	180				
	300				
(e)	450			4	
Q23) The r	nolecular shape of IF ₅ is:				¥
a a)	square pyramidal				
b)	trigonal planar				
c)	bent				
🧼 d)	linear				
1.92	octahedral				
	iven temperature, the vapore difference in vapour press				The major physical
		sure is that on 4 and	2 31 4 Have differen		
	dipole moments				
	molar masses				
(c)	ionization energies				
*****	electron affinities				
, e)	magnetic susceptibilities				

The figure shown above is a plot of conductance data obtained during titration of HCl with standard solution of NaOH. (If it is not seen: on x ass is shown volume of NaOH solution) Which of the following statements about results is NOT true?

a) Point B is end point of titration.b) |slope AB| > |slope BC

Q25)

c) [The measured conductance increases after point B because the overall concentration of ions increases.

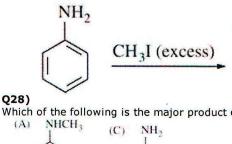
e) Segment BC represents the conductance due to ions from NaCl and NaOH in solution.

d) Na⁺ must have higher equivalent conductance than H₃O⁺

Q26) Sodium acetate spontaneously crystallizes out of supersaturated solution on standing or one the addition of a seed crystal. Which of the following is true for the thermodybamic quantities of this process?

a) DS<0, DH<0

(D mean Delta)


b) DS<0, DG>0 **c)** DS>0, DH>0

d) DS>0, DG<0

e) DG<0, DH>0

Q27) $PbF_2(s)$, which is slightly soluble in water, is dissolved in water to form a saturated solution in equillibrium with solid PbF_2 . Which of the following will cause additional $PbF_2(s)$ to dissolve?

- **a)** Adding HNO₃
- **b)** Adding Pb(NO₃)₂ **c)** Adding seed crystal
- d) Adding solid PbF₂(s)
- e) Evaporating some of the water to decrease the volume of solution

Which of the following is the major product of the reaction shown above? (A)

(B)
$$N(CH_3)_2$$
 CH_3 $(D) + N(CH_3)_3 \Gamma$

CH₃

NH,

a) A

b) B

e) E

Q29) What is the oxidation number of antimony (Sb) in caesium heptafluorodiantimonate, CsSb₂F₇?

a) -1 b) +1

d) +5

e) 0

mass. Which one of the following compounds is it? a) CH₃CH₂CH=CHCH₂COOH b) CH₃CH=CHCH₂COOH

c) CH₃COCH₂COCHCH₂ d) CH2=CHCOOCH2CH3

e) CH3CH2CH2OH

Q30) An unknown compound was analysed by mass spectrometry. Compound has a molecular mass of 114 g/mol. An elemental analysis was also performed which showed that the compound contained 63% C, 9% H and 28% O by

Q31) What is the total number of isomers for a compound with molecular formula C3H6Cl2?

Q32) If the percentage of water of crystallization in CuSO₄*xH₂O is 36.1%, what is the value of x?

a) 3
b) 4
c) 5
d) 6
e) 7

a) 1 **b)** 2 **c)** 3

a) 1 **b)** 2 c) 3 d) 4 e) 5 Q37) The standard reduction potentials are given below for H2O solutions, which of the species listed is the best oxidizing agent? $Cu^{2+} + 2e = Cu E^{0} = +0.34 V$ $Ni^{2+} + 2e = Ni E^{0} = -0.23 V$ $Cd^{2+} + 2e = Cd E^{0} = -0.40 V$ $Fe^{2+} + 2e = Fe E^{0} = -0.44 V$ $Zn^{2+} + 2e = Zn E^{0} = -0.76 V$ a) Fe **b)** Fe²⁺ c) Cu²⁺ d) Zn²⁺ e) Zn Q38) Which one of the following series is arranged in order of increasing ionic radius? a) $Mg^{2+} < S^{2-} < Cl^{-} < K^{+} < Ca^{2+}$ **b)** $S^{2-} < Mq^{2+} < Ca^{2+} < Cl^{-} < K^{+}$ c) $S^{2-} < Cl^- < K^+ < Mq^{2+} < Ca^{2+}$ **d)** $Ca^{2+} < Cl^{-} < K^{+} < Mg^{2+} < S^{2-}$

Q36) Iodine binds to the double bonds in fatty acids. How many double bonds are in a molecule of a-linolenic acid, which has a molar mass of 278.4 g/mol, if 0.250 g of the acid requires 0.684 g of iodine for complete reaction?

b) QCl₂c) QCl₃d) Q₂Cl₃e) Q₃Cl₄

e) $Mq^{2+} < Ca^{2+} < K^+ < Cl^- < S^{2-}$

a) A **b)** B

Q39) Which of the following compounds is NOT aromatic?

Q42) 0.020 mole of CO₂ is dissolved in 1.0 litre of pure water. What is the H⁺ concentration in mole/litre?

Q43) Calculate the enthalpy of formation of anhydrous aluminium chloride, Al2Cl6(s), from the following data (1

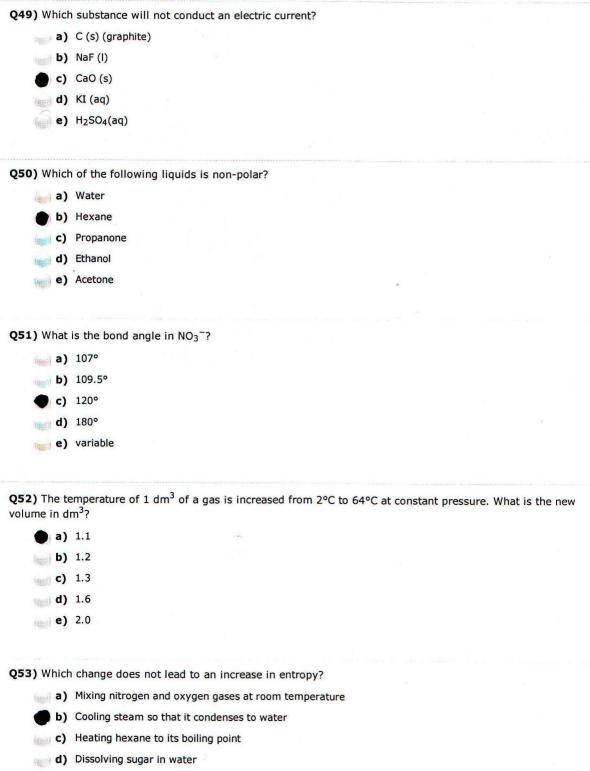
e) V(H₂O)₆²⁺

a) 0.020 **b)** 0.040 **c)** 9.3 x 10⁻⁵ **d)** 1 x 10⁻⁷ **e)** 1.2 x 10⁻¹¹

kcal = 4.186 kJ):

 $CO_2(aq) + H_2O <=> H^+ + HCO_3^- K_{a1} = 4.3*10^{-7}$

 $2AI(s) + 6 HCI(aq) = AI_2CI_6(aq) + 3 H_2(g) -240 kcal/mol$


 $HCO_3^- <=> H^+ + CO_3^{2-} K_{a2} = 5.6 \ 10_{-11}$

 $H_2(g) + Cl_2(g) = 2HCl(g) -44 \text{ kcal/mol}$

HCl(g) = HCl(aq) -17 kcal/mol $Al_2Cl_6(s) = Al_2Cl_6(aq) -154 \text{ kcal/mol}$

a) −234 kJ/mol
b) −1340 kJ/mol
c) −1557 kJ/mol
d) +645 kJ/mol
e) +1557 kJ/mol

```
Q44) How many molecules are present in a 9.0 g sample of water?
    a) 0.5
    b) 1.0
    c) 6.0*10<sup>23</sup>
       d) 3.0*10<sup>23</sup>
    e) 4.5*10<sup>23</sup>
Q45) What is the maximum mass of iron that can be produced from the reduction of 80 tonnes of iron(III)oxide?
    a) 28 tonnes
     b) 56 tonnes
    c) 82 tonnes
    d) 84 tonnes
    e) 112 tonnes
Q46) Which processes occur in the mass spectrometer?
I. Ionization by electron bombardment
II. Acceleration by a magnetic field
III. Deflection by a magnetic field
    a) I and II only
     b) I and III only
    c) II and III only
    d) I, II and III
    e) None of all
Q47) Which properties decrease in value when descending group 1?
I. Atomic radius
II. Ionization energy
III. Electronegativity
    a) I and II only
    b) I and III only
      c) II and III only
    d) I, II and III
    e) None of all
Q48) Which trend is correct when the elements are considered from left to right across period 3?
    a) The acidic character of the oxides decreases.
    b) The electrical conductivity of the elements increases.
        c) The bonding of the chlorides changes from ionic to covalent.
    d) Electronegativity decreases.
```


Q54) Which	n change increases the pH of a solution from 3 to 6?
a)	Doubling the [H ⁺]
(b)	Halving the [OH ⁻]
c)	Decreasing the [H ⁺] by a factor of 1000
(d)	Decreasing the [OH ⁻] by a factor of 1000
e)	Adding 1 mole of conjugate base.
Q55) Which	pair of compounds, in aqueous solution, could be used to make a buffer solution?
(a)	CH ₃ COOH and HC1
b)	HC1 and NaOH
c)	HC1 and NH ₄ Cl
a d)	HCOOH and NaOH
(e)	H ₂ SO ₄ and HCI
Q56) Durin What mass i	g the electrolysis of aqueous sulfuric acid, 1g of hydrogen gas forms at the negative electrode. n grams of oxygen forms at the positive electrode in the same time?
a)	4
b)	8
(c)	16
(d)	32
e)	48
Q57) Which	compound cannot be easily oxidized using acidified potassium dichromate(VI) solution?
a)	CH ₃ CH ₂ CH ₂ OH
(b)	CH ₃ CH(OH)CH ₃
(c)	(CH ₃) ₂ CHCH ₂ OH
d d)	(CH ₃) ₃ COH
e)	CH ₃ CH ₂ COH
Q58) Which	species cannot act as a nucleophile?
a)	H ₂ O
b)	NH ₃
() c)	CH ₄
(d)	CN ⁻
e)	

Q59) Which	halogenoalkane reacts most rapidly with silver nitrate solution to form a precipitate?
a)	1-bromobutane
b)	1-iodobutane
(c)	2-bromo-2-methylpropane
d)	2-iodo-2-methylpropane
e)	Halogenoalkanes does not react with salt solutions.
	*

 $\textbf{Q60)} \ \ \textbf{What type of reaction occurs when hexanedioic acid and 1,6-diaminohexane react together to form nylon?}$

- a) Additionb) Condensationc) Esterification
- d) Substitution
 - e) Elimination