XII BALTIC CHEMISTRY OLYMPIAD

Tartu, April 29 - May 2, 2004

Theoretical problems

SOLUTIONS

PROBLEM 1

a) $\mathrm{Eu}\left(M=152 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$
b) The IR spectrum of EuCl_{2} proves that the molecule is bent (not linear).

2 degenerate modes

2 degenerate modes

c) First chemist:

Oxidation in the air: $2 \mathrm{Eu}+\mathrm{O}_{2} \rightarrow 2 \mathrm{EuO}$
$\mathrm{EuO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Eu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$4\left[\mathrm{Eu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]+\mathrm{O}_{2} \rightarrow 4 \mathrm{Eu}(\mathrm{OH})_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(simplified reaction schemes showing formation of $\mathrm{Eu}_{2} \mathrm{O}_{3}$ or $\mathrm{Eu}(\mathrm{OH})_{3}$ are also acceptable)
$\mathrm{Eu}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Eu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O} \downarrow+\mathrm{H}_{2} \uparrow$
$4\left[\mathrm{Eu}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]+\mathrm{O}_{2} \rightarrow 4 \mathrm{Eu}(\mathrm{OH})_{3}+2 \mathrm{H}_{2} \mathrm{O}$
(a simplified reaction scheme showing formation of $\mathrm{Eu}(\mathrm{OH})_{3}$ is also acceptable)
$\mathrm{Eu}(\mathrm{OH})_{3}+3 \mathrm{HCl} \rightarrow \mathrm{EuCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
The white crystals obtained by evaporation of the solution are $\mathrm{EuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{EuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{SOCl}_{2} \rightarrow \mathrm{EuCl}_{3}+\mathrm{SO}_{2} \uparrow+2 \mathrm{HCl} \uparrow$
$2 \mathrm{EuCl}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O} \downarrow+6 \mathrm{HCl}$
$\mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ is slightly soluble in water, so precipitation is not complete.

Second chemist:

$\mathrm{Eu}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Eu}^{2+}+2\left(\mathrm{e}^{-} \cdot \mathrm{NH}_{3}\right)$
$\mathrm{Eu}^{2+}+2\left(\mathrm{e}^{-} \cdot \mathrm{NH}_{3}\right)+2 \mathrm{NH}_{4} \mathrm{Cl}+(\mathrm{x}-2) \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \uparrow+\mathrm{EuCl}_{2} \cdot \mathrm{xNH}_{3}$
$\mathrm{EuCl}_{2} \cdot \mathrm{NHH}_{3}$ (heating in vacuo) $\rightarrow \mathrm{EuCl}_{2}+\mathrm{x} \mathrm{NH}_{3} \uparrow$
$\mathrm{EuCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{EuSO}_{4} \downarrow+2 \mathrm{HCl}$
$4 \mathrm{EuSO}_{4}+2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{H}_{2} \mathrm{O}$
Some part of $\mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ precipitates in form of $\mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (heating) $\rightarrow \mathrm{Eu}_{2}\left(\mathrm{SO}_{4}\right)_{3}+8 \mathrm{H}_{2} \mathrm{O}$

PROBLEM 2

B

C

D

E

F

G

H

I

L

M

AlCl_{3} is a catalyst. It acts as a Lewis acid, stabilizes intermediate carbocatione.
$\mathrm{HF}+\mathrm{SbF}_{5}$ is a superacid, which also stabilizes intermediate carbocatione.

PROBLEM 3

1. The fact, that specific rotation changes, does not give ability to discard neither mechanism. When $\mathrm{S}_{\mathrm{N}} 1$ mechanism takes place, intermediate planar carbocation is formed and iodide ion can attach from both side with equal possibilities. Therefore during reaction racemization takes place.

When $\mathrm{S}_{\mathrm{N}} 2$ mechanism takes place, iodide anion attacks from opposite side to the leaving group (iodine). Formally, radioactive iodine does not differ from "regular" iodine, therefore the product of reaction is (2S)-2iodooctane - enantiomer of original compound. Therefore racemization
takes place in this case.

2. The fact, that racemization is two times faster than replacement with radioactive iodine shows that reaction goes through $\mathrm{S}_{\mathrm{N}} 2$ mechanism. When $\mathrm{S}_{\mathrm{N}} 2$ mechanism takes place, with a radioactive iodide attack enantiomer of starting compound is forming. Thus, when the half of starting compound will have radioactive iodine, racemization will be full.
3. After the reaction will end, specific rotation will be 0 .
4. The water phase will have inorganic salt Nal (in fact it will be mixture of NaI and Nal^{*}).
Water should be cold:
a) When reaction mixture is diluted with cold water, temperature is dropped down and therefore reaction practically stops.
b) secondly, alkiliodides are very reactive compounds and thus with cold water hydrolysis is avoided.
5. When reaction is performed in methanol, methanol can be not only solvent, but also nucleophile. During this reaction, 2-metoxioctane will form, specific rotation of which isn't equal to specific rotation of 2iodoctane(even may have different sign). As in this case there are two concurrent reactions, specific rotation and radioactivity are not linearly dependent.
6. $\kappa \square=\lambda v\left(\alpha_{0} / \alpha\right) / \mathrm{t}$, and $\mathrm{k}=\mathrm{k}^{\prime} /\left[\mathrm{NaI}^{*}\right]$
$k^{\prime}=5 \mathrm{E}-5$, and $\mathrm{k}=0,03057$

PROBLEM 4

1. Solid \mathbf{A} elemental analysis yields: $\mathrm{C}: \mathrm{H}: \mathrm{Cl}=1: 5: 1 .{ }^{1} \mathrm{H}$ NMR data suggest that there is a CH_{2} group attached to the electronegative atom X such as Cl , O, N. Assuming only one additional atom X in A molecule yields $\mathrm{C}: \mathrm{H}: \mathrm{Cl}: \mathrm{X}=$ 1:5:1:14.0/M (X), and assumption that X is nitrogen gives $\mathrm{C}: \mathrm{H}: \mathrm{Cl}: \mathrm{N}=1: 5: 1: 1$ and finally $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}$, which is $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \cdot 2 \mathrm{HCl}$, ethylediamine dihydrochloride (en 2 HCl).
$\mathrm{C}: \mathrm{H}: \mathrm{Cl}$ ratio in \mathbf{B} is 6:26:3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts in \mathbf{A} and \mathbf{B} are similar, which suggest that original molecule \mathbf{A} did not change significantly in
B. If so, nitrogen is also present in \mathbf{B}, and the number of N atoms is equal to the number of C atoms. This reasonable assumption gives $\mathrm{C}: \mathrm{H}: \mathrm{Cl}: \mathrm{N}=$ 6:26:3:6, and the rest of 20.6% can be either Co or O or both. The presence of Na in B can be ruled out. One Co atom per B molecule yields 16.2%, and the rest 4.4% accounts for one O. Thus the molecular formula for \mathbf{B} is $\mathrm{C}_{6} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{6} \mathrm{CoO}$. Obviously, there are 3 molecules of en present, and compound \mathbf{B} is Co complex: $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$.

Let's see what we know about C : (a) $\mathrm{C}: \mathrm{H}: \mathrm{Cl}=4: 10: 1$; (b) 2 types of C atoms in molecule; (c) obtained from B, thus contains Co.
2. Optical isomers of $(\pm)\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ can be resolved into two enantiomers B1 and B2.

B1

B2
The most common resolution method is converting two enantiomers into two diastereomers. Diastereomers can be separated because they have different physical properties. In this case optically active anion of (2R,3R)-(+)-tartaric acid can be used. $\left[(+) \mathrm{Co}(\mathrm{en})_{3}\right][(+)$ tart $] \mathrm{Cl}$ is less soluble than $\left[(-) \mathrm{Co}(\mathrm{en})_{3}\right][(+)$ tart $] \mathrm{Cl}$ and can be precipitated out from solution.
Other resolution methods: (a) "by hand", or Pasteur method is applicable in very few cases; (b) chromatography on a chiral column; (c) chiral catalysis.
3. Upon reduction with Zn amalgam $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ is converted to $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{2+}$ (D). It cannot be resolved into two enantiomers, since Co^{2+} complex is very labile. The en molecule comes on Co center and off it very fast.
4. The reaction between $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}, \mathrm{CH}_{2} \mathrm{O}$ and NH_{3} leads to macrobicyclic complex in which the ligand completely encapsulates the cobalt ion. See Scheme for details.

The condensation of $\mathrm{CH}_{2} \mathrm{O}$ with a bound deprotonated amine to give the coordinated carbinolamine is followed by elimination of $\mathrm{H}_{2} \mathrm{O}$. The resulted imine is then attacked by NH_{3} to yield the gem-diamine. Addition of another formaldehyde molecule and imine formation allows intramolecular condensation of the gem-diamine with imine, and the first first six-membered ring system is formed. Formation of another imine followed by intramolecular condensation of the secondary amine leads to the completed cap, and the process is repeated on the opposite octahedral face to give the completely encapsulated metal ion.

PROBLEM 5

1. Reaction: $\quad 2 \mathrm{NO}+\mathrm{Br}_{2} \Leftrightarrow 2 \mathrm{NOBr}$
2. The amount of reactant moles is n^{0}, in equilibrium state n
$\mathrm{n}^{\circ}{ }_{\mathrm{NO}}=\mathrm{n}_{\mathrm{NO}}+\mathrm{n}_{\mathrm{NOBr}}$
$\mathrm{n}_{\mathrm{Br} 2}^{\circ}=\mathrm{n}_{\mathrm{Br} 2}+0,5 \mathrm{n}_{\mathrm{NOBr}}$
The overall pressure is equal to the sum of partial pressures, hence $\mathrm{p}_{\mathrm{NO}}+\mathrm{p}_{\mathrm{Br} 2}+\mathrm{p}_{\mathrm{NOBr}}=230,0 \mathrm{~mm} \mathrm{Hg}$
If the reaction is not occurred, then the partial pressures at 335 K were, accordingly
$p_{\mathrm{NO}}=180 \cdot 335 / 297=203,0 \mathrm{~mm} \mathrm{Hg}$ and
$\mathrm{p}_{\mathrm{Br} 2}=0,72 \cdot 62400 \cdot 335 /(1200 \cdot 2 \cdot 80)=78,4 \mathrm{~mm} \mathrm{Hg}$
Because the partial pressures of gases are proportional to the number of moles, then
$\mathrm{p}_{\mathrm{NO}}+\mathrm{p}_{\mathrm{NOBr}}=203,0 \mathrm{~mm} \mathrm{Hg}$ and $\mathrm{p}_{\mathrm{Br} 2}+\mathrm{p}_{\mathrm{NOBr}}=78,4 \mathrm{~mm} \mathrm{Hg}$.
We get the following equations:
$\mathrm{p}_{\mathrm{NO}}+\mathrm{p}_{\mathrm{Br} 2}+\mathrm{p}_{\mathrm{NOBr}}=230,0$
$\mathrm{p}_{\mathrm{NO}}+\mathrm{p}_{\mathrm{NOBr}}=203,0$
$\mathrm{p}_{\mathrm{Br} 2}+0,5 \mathrm{p}_{\mathrm{NOBr}}=78,4$
(3), from which
$\mathrm{p}_{\mathrm{Br} 2}=(1)-(2)=230,0-203,0=27,0 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{p}_{\text {NOBr }}=(78,4-27,0) \cdot 2=102,8 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{p}_{\mathrm{NO}}=230,0-27,0-102,8=100,2 \mathrm{~mm} \mathrm{Hg}$
The equilibrium constant is:
$\mathrm{K}_{\mathrm{p}}=\mathrm{p}^{2}{ }_{\mathrm{NO}} \cdot \mathrm{p}_{\mathrm{Br} 2} / \mathrm{p}^{2}{ }_{\mathrm{NOBr}}=100,2^{2} \cdot 27,0 / 102,8^{2}=25,7 \mathrm{~mm} \mathrm{Hg}=0,0338 \mathrm{~atm}$
3. If the pressure is increased, then the equilibrium shifts to the formation of NOBr (smaller number of moles).
4. The partial pressure of NO in equilibrium state is $100,2 \mathrm{~mm} \mathrm{Hg}$. Using equation
$\mathrm{pV}=\mathrm{nRT}$ we find the number of moles:
$100,2 \cdot 1200=n \cdot 62400 \cdot 335$;
$\mathrm{n}=100,2 \cdot 1200 /(62400 \cdot 335)=5,75 \cdot 10^{-3}$ moles.

PROBLEM 6

1. Cathode: $2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{s})+2 \mathrm{e}=\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$

Anode: Kolbe reaction: $2 \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{s})-2 \mathrm{e}=\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$
2. $n\left(\mathrm{CO}_{2}\right)=5,213 / 44,01=0,1185 \mathrm{~mol}$
$\mathrm{V}\left(\mathrm{CO}_{2}\right)=\mathrm{nRT} / \mathrm{p}=0,1185 \cdot 0,0831 \cdot 298,15 / 1,0=2,935 \mathrm{dm}^{3}$
$\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=2 \cdot 15=30 \mathrm{~g} / \mathrm{mol}, \mathrm{n}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=0,0593 \mathrm{~mol} ; \mathrm{V}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=1,468 \mathrm{dm}^{3}$
3. $Q=0,1185 \cdot 96485=11433 C(A s) ; Q=11433 / 3600=3,176 \mathrm{Ah}$
4. $\mathrm{T}=\mathrm{Q} / \mathrm{I}=3,176 / 0,706=4,50 \mathrm{~h}$
$\mathrm{M}=11433 \cdot 63,55 /(2 \cdot 96485)=3,765 \mathrm{~g}$
5. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1,85 \cdot 10^{-5} / 3=6 \cdot 10^{-6}$;
$\mathrm{E}\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right)=0,059 \cdot \log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$;
$E\left(\mathrm{H}^{+} / \mathrm{H}_{2}\right)=0,059 \cdot(-5,22)=-0,308 \mathrm{~V}$

