Dobeles novads

Grindex

8.3.2.1./16/I/002

NACIONĀLA UN STARPTAUTISKA MĒROGA PASĀKUMU ĪSTENOŠANA IZGLİTOJAMO TALANTU ATTİSTİBAI

$$
D \sim \text { n }
$$

29 ${ }^{\text {th }}$ Baltic Chemistry Olympiad Dobele, Latvia, April 19-21, 2023

PRACTICAL EXAM

Student code:

\mathbf{L}	\mathbf{V}	\mathbf{A}	

April 19th, 2023
Dobele, Latvia

Periodic table:

$\begin{array}{\|r\|} \hline 57 \\ 138.91 \\ \mathbf{L a} \end{array}$	$\begin{array}{r} 58 \\ 140.12 \\ \mathbf{C e} \end{array}$	$\begin{array}{\|c} 59 \\ \\ \hline 140.91 \\ \mathbf{P r} \end{array}$	$\left\|\begin{array}{c} 60 \\ 144.24 \\ \mathbf{N d} \end{array}\right\|$	$\begin{array}{\|c\|} \hline 61 \\ \begin{array}{c} (145) \\ \text { Pm } \end{array} \\ \hline \end{array}$	$\left.\begin{array}{\|c} 62 \\ 150.36 \\ \mathrm{Sm} \end{array} \right\rvert\,$	$\begin{array}{\|} 63 \\ 151.96 \\ \mathrm{Eu} \end{array}$	$\begin{array}{r} 64 \\ 157.25 \\ \text { Gd } \end{array}$	$\begin{array}{\|r\|} \hline 65 \\ \hline 158.93 \\ \mathrm{~Tb} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 66 \\ 162.50 \\ \text { Dy } \end{array}$	$\left\|\begin{array}{c} 67 \\ 164.93 \\ \mathrm{Ho} \end{array}\right\|$	$\begin{aligned} & 68 \\ & 167.26 \\ & \mathrm{Er} \end{aligned}$	$\begin{gathered} 69 \\ \begin{array}{c} 68.93 \\ \text { Tm } \end{array} \end{gathered}$	$\begin{gathered} 70 \\ 173.05 \\ \text { Yb } \end{gathered}$	$\begin{array}{r} 71 \\ 174.97 \\ \mathbf{L u} \end{array}$
(227)	$\begin{aligned} & 90 \\ & 232.04 \end{aligned}$ Th	$\begin{aligned} & 91 \\ & 231.04 \end{aligned}$	$\begin{array}{\|l\|} \hline 92 \\ 238.03 \\ \hline \end{array}$	${ }^{93}{ }_{(237)}$	${ }^{94}{ }^{(244)}$	${ }^{95}{ }_{(243)}$ Am	${ }^{96}{ }_{(247)}$	${ }^{97}{ }_{(247)}$	${ }^{98}{ }_{(251)}$	${ }^{99}{ }_{(252)}$	${ }_{(257)}^{100}$	$\xrightarrow{101}$	$\underset{(259)}{102}$	$\begin{gathered} 103 \\ (266) \end{gathered}$

General instructions:

- Follow safety rules. No eating or drinking in the lab during the practical exam.
- During the Practical exam, some of the glassware and plastics are expected to be used several times. Clean it carefully.
- You can start writing when the command Start has been given.
- You have 5 hours to complete the practical exam.
- Practical examination consists of 2 Problems.
- For draft and calculation purposes, you can use separate sheets or the other sides of the theoretical exam booklet.
- It is strictly forbidden to communicate between students during the exam.
- Raise your hand if you require to go to the bathroom.
- Write your student code on each page.
- The official English version of the exam is available on request for clarification.

Good luck!
\square

List of chemicals (Problem 1):

Labels / amount	Content
$\mathbf{1 , 2 , 3 , 4}$	Solids in labelled vials
I, II, III, IV, V	Solutions in labelled vials
A, B, C	Solutions in labelled vials
PE	Petroleum ether (hexanes) in a stoppered test tube

List of chemicals (Problem 2):

$\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}$	Solutions in labelled vials
$\mathbf{C H}-1, \mathbf{C H}-2$, CH-3	Solutions in labelled vials
\mathbf{D}, E	Solutions in labelled vials
NH_{3}	Diluted aqueous ammonia in a stoppered test tube

List of chemicals (both Problems):

$\mathrm{H}_{2} \mathrm{O}$	Distilled water in a plastic bottle
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Diluted sulfuric acid in a stoppered test tube
$\mathbf{Z n}$	Zinc dust in a stoppered test tube
	Plastic pipettes
	Test tubes

\square

Practical Problem No. 1 (20\% of total, 86 pts)

Part A.

Switzerland is a globally known centre of the pharmaceutical industry. Many pharmaceutical companies are located here, including very big corporations, such as Novartis and Hoffmann-La Roche in the Basel area. Chemicals are taking leading positions among export products of the country. Switzerland is also the home of the World Health Organization (WHO), which is a specialized agency of the United Nations with the headquarter in Geneva.

In 1977 WHO published an Essential Medicines List (EML), which is updated every 2 years. Currently, it contains almost 500 medications, which are considered to be the most effective and safe to cover the principal needs of the health system. In this task, you will have to determine the compounds from this list and learn, for which properties they were included in the EML.
1.1. In each of the vials 1-4 there is only one solid from the list: $\mathrm{BaSO}_{4}, \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{F}, \mathrm{KMnO}_{4}, \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}, \mathrm{C}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{I}_{2}, \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NO})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Fill in the table with the formulas of corresponding medications.

Formula	Trade name (example)	Medical use
	CharcoAid	Poisonings (non-specific antidote) 1
	Radiogardase	Thallium and radioactive caesium poisonings 1
	Trisenox	Cancer 1
	Feosol	Iron deficiency 1
	Nipride	Hypertensive crisis (high blood pressure) 1
	Permitabs	Dermatological infections 1
	Varibar	X-ray imaging (radiocontrast agent) 1
	lodosorb	Iodine deficiency, antiseptic 1
	Saforide	Dental caries prevention, antimicrobial 1

\square
1.2. Identify the compounds in vials 1-4 by analyzing their appearance, solubility in water and petroleum ether, as well the colours of formed solutions. Mark the solubility and colours as "+" or "-".

Vial	Compound	Soluble in water?	Solution coloured?	Soluble in hexane?	Solution coloured?
$\mathbf{1}$	2				
$\mathbf{2}$	2				
$\mathbf{3}$	2				
4	2				

1.3. Find which two compounds from 1-4 can react with each other in an aqueous solution. Perform this reaction without and with the addition of acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. Write down the equations of the reactions. Use " \downarrow " for precipitates and " \uparrow " for gas evolution.

Conditions	Reaction equation
Without $\mathrm{H}_{2} \mathrm{SO}_{4}$	2
With $\mathrm{H}_{2} \mathrm{SO}_{4}$	2

Part B.

In vials I-V there are five solutions of sodium salts also from EML: fluoride, hypochlorite, nitrite, hydrogen carbonate and thiosulfate.
1.4. Assign the medical use of the compounds with the letter of corresponding medical use:
\boldsymbol{A} - Severe metabolic acidosis, B - Dental caries prevention, \boldsymbol{C} - Cyanide poisoning, D Cyanide poisoning and fungal skin infections, \boldsymbol{E} - Disinfectant

Formula	Letter
NaNO_{2}	1
NaHCO_{3}	1
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	1
NaF	1
NaClO	1

1.5. Identify the compounds $\boldsymbol{- V}$. You can use the solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and the compounds $\mathbf{1}$ 4. For each compound, write at least one chemical reaction, which helped you explicitly identify the compounds. Use " \downarrow " for precipitates and " \uparrow " for gas evolution.

Compound	Formula	Reaction(s) equation(s)
I	4	2
II	4	2
III	4	2
IV	4	2
V	4	2

Part C.

In vials $\mathbf{A - C}$ there are 3 solutions of mixtures of 2 compounds from the list: $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{ZnSO} 4$, $\mathrm{KI}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{MgSO}_{4}, \mathrm{CaCl}_{2}$. All these compounds are also listed as important medicines in EML. Each of them is used to prepare a mixture and is used only once.
1.6. Find the only possible compositions of the 3 mixtures. Arrange them with the medical use of the compounds.

	Compound	Medical use
Mixture 1	2	Bipolar disorders 1
		Hyperthyroidism, radiation accidents, fungal infections 1
	2	Anticonvulsant 1
		Diarrhoea 1
Mixture 3	2	Corresponding metal supplement 1
		Infections of the ear canal 1

1.7. Perform the cross-reactions between mixtures $\boldsymbol{A}-\boldsymbol{C}$ and fill in the following table of observations with the symbols: " \downarrow " - precipitate, " \uparrow " - gas, "-" if there are no visible observations. Be aware that the result of some reactions can depend on the ratio of reagents used.

Mixtures	A	B	C
A			
B			
C			

\square
1.8. Based on the observations, determine the composition of each mixture. Write down the ionic equations of performed reactions. Use " \downarrow " for precipitates and " \uparrow " for gases.

Mixture A	4	
Mixture B	4	
Mixture C	4	
Combination		
A+B		
A+C		

\square

Practical Problem No. 2 (20\% of total, 133 pts)

Part A.

Switzerland, or officially the Swiss Confederation, is a federal republic consisting of 26 cantons. Interestingly, it does not have an official capital, although the parliament sits in Bern. Despite being a "federal city", it is not the most populated in Switzerland, the first place belongs to Zurich.

Switzerland has a code CH, abbreviated from the Roman name of the region Confœderatio Helvetica. You can find ".ch" as a top-level domain for Swiss websites. Also, each of the cantons has a two-letter abbreviation, listed below. They are used, for example, on car license plates.

CODE	Name	CODE	Name
ZH	Zurich	SH	Schaffhausen
BE	Bern	AR	Appenzell Ausserrhoden
LU	Lucerne	AI	Appenzell Innerhoden
UR	Uri	SG	St. Gallen
SZ	Schwyz	GR	Graubünden
OW	Obwalden	AG	Aargau
NW	Nidwalden	TG	Thurgau
GL	Glarus	TI	Ticino
ZG	Zug	VD	Vaud
FR	Fribourg	VS	Valais
SO	Solothurn	NE	Neuchâtel
BS	Basel-Stadt	GE	Geneva
BL	Basel-Landschaft	JU	Jura

In vials 1-5 there are five colourless solutions of individual ionic compounds. Each compound corresponds to one of Switzerland's cantons by its code: the first letter of the code is the starting letter for the metal cation formula and the second letter of the code is the starting letter for the anion formula. For example, SH (Schaffhausen) can correspond to SrHPO_{4} and BS (Basel-Stadt) to BaSO_{3}. The solutions 1-5 contain the compounds with the following anions: formate ($\mathbf{H C O O}^{-}$), hydroxide $\left(\mathrm{OH}^{-}\right)$, iodide $\left(\mathbf{I}^{-}\right)$, sulphide (\mathbf{S}^{2-}) and tungstate $\left(\mathrm{WO}_{4}{ }^{2-}\right)$.
2.1. For each anion from compounds 1-5, specify possible canton codes(s) and watersoluble compounds that could correspond to them. Note that some canton code(s) may
\square
have no examples of water-soluble compounds. Do not consider the compounds of f-block elements.

Anion	Canton code(s)	Example of the compound
Formate $\left(\mathrm{HCOO}^{-}\right)$		2
Hydroxide $\left(\mathrm{OH}^{-}\right)$		2
lodide $\left(\mathbf{I}^{-}\right)$		2
Sulphide $\left(\mathbf{S}^{2-}\right)$		2
Tungstate $\left(\mathrm{WO}_{4}{ }^{2-}\right)$	2	

2.2. Perform the cross-reactions between solutions $1-5$ as well as reactions with NH_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ solutions and fill in the following table of observations with the symbols: " \downarrow " for precipitation, " \uparrow " for gas evolution, and "-" if there are no visible observations. Note the colours of precipitates.

Solution	1	2	3	4	5
1					
2					
3					
4					
5					
NH_{3}					
$\mathrm{H}_{2} \mathrm{SO}_{4}$					

2.3. Based on the observations and above-mentioned information, identify the compounds 1-5.

1	2	3	4	5
4	4	4	4	4

2.4. Write down the ionic equations of the performed reactions. Use " \downarrow " for precipitates and " \uparrow " for gases.

Combination	lonic equation(s)
$1+2$	2
$1+3$	2
$1+4$	2
$1+5$	2
$2+3$	2
$2+4$	2
$2+5$	2
$3+4$	2
$3+5$	2
$4+5$	2
$1+\mathrm{NH}_{3}$	2
$1+\mathrm{H}_{2} \mathrm{SO}_{4}$	2
$2+\mathrm{NH}_{3}$	2
$2+\mathrm{H}_{2} \mathrm{SO}_{4}$	2
$3+\mathrm{NH}_{3}$	2
$3+\mathrm{H}_{2} \mathrm{SO}_{4}$	2
$4+\mathrm{NH}_{3}$	2
$4+\mathrm{H}_{2} \mathrm{SO}_{4}$	$2+\mathrm{NH}_{3}$

\square

Part B.

In vials $\mathbf{C H}-1, \mathbf{C H}-2$ and $\mathbf{C H}-3$ there are three colourless solutions of different formates (HCOO^{-}), which correspond to the code for Switzerland $\mathbf{C H}$ according to the rule described before.
2.5. Provide 3 examples of each of the formates that form colourless and coloured solutions. Do not consider the compounds of f-block elements.

Colourless	1	1	1
Coloured	1	1	1

2.6. Identify the compounds in test tubes $\mathbf{C H}-\mathbf{1}, \mathbf{C H}-2$ and $\mathbf{C H}-3$ by conducting reactions with NH_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Write down the ionic equations and specify the observations: formation of precipitate (\downarrow) and its colour, gas evolution (\uparrow). Use "-" if there are no visible observations.

Vial	Compound	Ionic equation(s) with observations
CH-1	4	2
CH-2	4	2
CH-3	4	2

2.7. Specify the combination of two anions from compounds 1-5, which could also be used to identify the cations in CH-1, CH-2 and CH-3. Check your suggestion, if possible, by performing the reactions with chosen anion. Write down the corresponding ionic equations and specify the observations: formation of precipitate (\downarrow) and its colour, gas evolution (\uparrow) or other effects. Use "-" if there are no visible observations.

Chosen anions	2	2
Vial	lonic equation(s) with observations	
CH-1	2	
CH-2	2	
CH-3	2	

Part C.

In vials \mathbf{D} and \mathbf{E} there are two solutions of salts of different shades of blue. Following the rule described above, the formula of each salt corresponds either to the code for Switzerland or cantons.
\square
2.8. Perform the reactions of \boldsymbol{D} and \boldsymbol{E} with: a) variable quantities of NH_{3} solution; b) Zn with the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Based on observations, identify the cations of given salts and specify possible associated code(s) of cantons or Switzerland. Write down the ionic equations of conducted reactions, indicating precipitates (\downarrow), gas evolution (\uparrow), or other effects, including colour changes.

Vial	Cation	Associated code(s)
D	4	
E	4	

Combination	Ionic equation(s)
$\mathbf{D}+\mathrm{NH}_{3}$	2
$\mathrm{D}_{+} \mathrm{Zn}\left(\mathrm{H}^{+}\right)$	2
$\mathrm{E}_{+} \mathrm{NH}_{3}$	2
$\mathrm{E}_{+} \mathrm{Zn}\left(\mathrm{H}^{+}\right)$	2

2.9. Suggest the anions in \boldsymbol{D} and \boldsymbol{E}. Check your suggestion by performing the reaction(s) with any reagent or encoded solution. Write down the corresponding chemical equations and specify the observations: formation of precipitate (\downarrow) and its colour, gas evolution (\uparrow), or other effects.

Vial	Anion	Reaction equation(s) with observation(s)
D	4	2
E	4	2

2.10. The complex formed by one of the salts in the excess of ammonia is called Schweizer's reagent. It is named after the Swiss chemist Matthias Eduard Schweizer (1818-1860), who discovered its property to dissolve a common substance. Choose the name of this substance:
\square polyethyleneproteins
\square fats
\square starch
\square cellulose 1

