

8.3.2.1./16///002

NACIONĀLA UN STARPTAUTISKA MĒROGA PASĀKUMU ĪSTENOŠANA IZGLİTOJAMO TALANTU ATTİSTİBAI

$29^{\text {th }}$ Baltic Chemistry Olympiad Dobele, Latvia, April 19-21, 2023

THEORETICAL EXAM SOLUTIONS

\square

Problem No. 1 - Determination of protein content by Kjeldahl method (10\% of total)

The Kjeldahl method was developed in 1883 by the Danish chemist Johan Kjeldahl. It was designed to determine the nitrogen content in organic compounds. Although 140 years have passed, this method is still used to determine protein content in food. The method consists of three stages: digestion, distillation, titration and calculations.

I. Digestion stage

At the digestion stage, nitrogen in sample is converted into ammonium ions. Digestion is achieved by adding excess of concentrated sulfuric acid to sample and boiling mixture for a few hours.
1.1. Write the balanced equation for the reaction between heated concentrated sulfuric acid and: a) C, b) S.
a) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{p}$.
b) $\mathrm{S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{p}$.
1.2. Will boiling concentrated sulfuric acid convert nitrate ions into ammonium ions? Circle the correct answer.
Yes / No 2 p.

Concentrated sulfuric acid is $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Interestingly, pure, anhydrous sulfuric acid contains not only $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecules. As the equilibrium is reached, $\mathbf{H S O}_{\mathbf{4}}^{-} ; \mathbf{H S}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}^{-} ; \mathbf{H}_{\mathbf{2}} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}} ; \mathbf{H}_{\mathbf{3}} \mathbf{O}^{+} ; \mathbf{H}_{\mathbf{3}} \mathbf{S O}_{\mathbf{4}}^{+}$are also found.
1.3. Fill in the table by entering formulas.

Compound	Quantity (mmol) in 1 kg pure $\mathrm{H}_{2} \mathrm{SO}_{4}$
HSO_{4}^{-}	14.9
$\mathrm{H}_{3} \mathrm{SO}_{4}^{+}$	11.3
$\mathrm{H}_{3} \mathrm{O}^{+}$	8.0
$\mathrm{HS}_{2} \mathrm{O}_{7}^{-}$	4.4
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	3.6

Explanation: since total charge of solution should be equal $0, \mathrm{c}$ (cations) $=\mathrm{c}$ (anions).
4 p for all 3 correct. 0 p for any mistake.

1.4. Tick the correct answer.

The addition of NaCl and/or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will increase the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. There is little to no difference, if NaCl or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is used.
\square
\square The addition of NaCl will increase the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. For faster digestion it is significantly better to add NaCl than $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

\square The addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will increase the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$. For faster

 digestion it is significantly better to add $\mathrm{Na}_{2} \mathrm{SO}_{4}$ than NaCl .The addition of NaCl and/or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will reduce the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$.The addition of NaCl and/or $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will reduce the boiling point of $\mathrm{H}_{2} \mathrm{SO}_{4}$, however, salt will act as a catalyst.2 p.

II. Distillation stage

At the distillation stage, solution from digestion stage with formed $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, is exposed to an excess of NaOH solution. Ammonium ions react with hydroxide ions:
$\mathbf{N H}_{4}^{+}+\mathbf{O H}^{-} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{2} \mathbf{O}$.
1.5. Is solution after first stage mixed with NaOH excess is buffer solution? Circle the correct answer.
Yes $/$ No 2 p.
1.6. Calculate the equilibrium constant for (1) reaction, knowing that the pH of the $0.50 \mathrm{~mol} / \mathrm{l}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution is 4.63 .

$$
\begin{aligned}
& c\left(\mathrm{NH}_{4}^{+}\right)=1,0 \mathrm{~mol} / \mathrm{l} . \mathrm{pH}=4.63 \text {, so } c\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=10^{-4.63}=2.344 \times 10^{-5} \mathrm{~mol} / \mathrm{l} \\
& \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& K_{a}=\frac{\left[N H_{3}\right]\left[H_{3} O^{+}\right]}{\left[N H_{4}^{+}\right]}=\frac{\left[H_{3} O^{+}\right]^{2}}{\left[N H_{4}^{+}\right]}=\frac{\left(2.344 \times 10^{-5}\right)^{2}}{1}=5.5 \times 10^{-10} \\
& 3 p \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}, K_{b}=\frac{1 \times 10^{-14}}{K_{a}}=1.8 \times 10^{-5} \\
& \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}, \mathrm{~K}=\frac{1}{K_{b}}=\frac{1}{1.8 \times 10^{-5}}=5.5 \times 10^{4} \\
& 3 p
\end{aligned}
$$

Answer: 5.5×10^{4}
Generated ammonia reacts with boric acid excess. Boric acid is very convenient to use, since there is no need to know its exact concentration. After reaction, solution can be titrated with a strong acid. In solution boric acid is ionized by water:
\square
 shown that boric acid solution contains $\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}$ions due to the reaction below:
$\mathbf{H}_{3} \mathbf{B O}_{3}+2 \mathbf{H}_{2} \mathbf{O} \rightleftarrows\left[\mathbf{H}_{4} \mathbf{B O}_{4}\right]^{-}+\mathbf{H}_{3} \mathbf{O}^{+}$, reaction $\mathrm{pK}=9.14$.
1.7. Assume that both reactions occur in the boric acid solution. Calculate $0.10 \mathrm{mol//} \mathrm{H}_{3} \mathrm{BO}_{3}$ pH .

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{K}_{1}=\frac{\left[\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]} \approx \frac{\left[\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{0.1} \\
& \mathrm{H}_{3} \mathrm{BO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{K}_{2}=\frac{\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]} \approx \frac{\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{0.1} \\
& \left\{0.1 K_{1}=\left[\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] 0.1 K_{2}=\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}\right]+\right. \\
& {\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right] \quad 4 \mathrm{p} .} \\
& {\left[\left[\mathrm{H}_{2} \mathrm{BO}_{3}\right]^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]} \\
& 0.1 \mathrm{~K}_{1}=\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]\right)\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}-\left[\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}-0.1 \mathrm{~K}_{2} \\
& 4 \text { p. } \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=0.1 K_{1}+0.1 K_{2}} \\
& p H=-\log \log \sqrt{0.1 K_{1}+0.1 K_{2}}=-\log \sqrt{0.1 \times 10^{-9.24}+0.1 \times 10^{-9.14}}=4.942 \mathbf{p} .
\end{aligned}
$$

Answer: 4.94
1.8. Draw $\mathbf{H}_{3} \mathbf{O}^{+}, \mathbf{H}_{3} \mathbf{B O}_{3}$ and $\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}$Lewis structures, including formal charges. Determine central atom geometry (by VSEPR) and write it in the table.

	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{3} \mathrm{BO}_{3}$	$\left[\mathrm{H}_{4} \mathrm{BO}_{4}\right]^{-}$
Lewis structure			
Geometry (IN CAPITAL LETTERS)	Trigonal pyramid	Trigonal planar	Tetrahedral

1 p. for each correct Lewis structure and geometry, 1 p. for all correct formal charges.
Total 7 p .

III. Titration and calculations stage

After titration is performed, amount of nitrogen in sample is calculated. To calculate amount of protein, amount of nitrogen is multiplied by specific factor. This factor for milk, rice and meat is $6.38,5.95$ and 6.25 , respectively.
1.9. After testing 10.0 g of rice, 19.50 ml of the $1.00 \mathrm{mol//} \mathrm{HCl}$ solution was used to titrate the final solution. Calculate how much grams of protein is in the rice sample.
\square

$$
\begin{array}{r}
n(H C l)=0.0195 \times 1.00=0.0195 \mathrm{~mol}=n(\mathrm{~N}) \\
m(N)=0.0195 \times 14=0.273 \mathrm{~g} \\
m(\text { protein })=0.273 \times 5.95=1.624 \mathrm{~g} \quad 3 \mathrm{p} .
\end{array}
$$

Knowing that the protein content is determined by the Kjeldahl method, the Chinese company "Sanlu Group" added melamine to their production for babies. The aim was to increase the amount of protein to be determined. This led to the deaths of 6 children. After investigation, imprisonments and death penalties were assigned for responsible people.

Structure of melamine
1.10. Consider that all nitrogen atoms in melamine are converted to ammonium ions. Calculate how much grams of protein 1.00 grams of melamine imitates in milk, analyzed by Kjeldahl method.

$M($ melamine $)=126.1 \mathrm{~g} / \mathrm{mol}$
$n($ melamine $)=\frac{1.0 \mathrm{~g}}{126.1 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.00793 \mathrm{~mol}$
$n(N)=0.00793 \times 6=0.04758 \mathrm{~mol}$
$m(N)=0.04758 \times 14=0.666 \mathrm{~g}$
$m($ protein $)=0.666 \times 6.38=4.25 \mathrm{~g}$
p.

Answer: 4.25 g

Problem No. 2 - Current and future applications of the $7^{\text {th }}$ group elements (10\% of total)

Part I. Manganese -coryphaeus among battery materials

Manganese is predominantly used in making alloys and batteries. Interestingly, manganese compounds were used in one of the first rechargeable batteries (Leclanché cell) and are still considered promising materials for future batteries.
Fill in the table to show that novel aqueous Mn-ion battery to compare it to metal-ion and lead-acid batteries from the following considerations. In the case of metal-ion batteries, neglect the electrolytes, respectively; in the case of Pb -acid, account for $35 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous electrolyte.
2.1. Calculate the theoretical energy density of the batteries (electrodes and, in the case of Pb -acid battery, also the electrolyte). Assign letters (A-F) denoting advantages and disadvantages (pros \& cons) to the corresponding batteries.
A: Electrolyte instability and high cost, low abundance of elements used.
B: Good overall safety, low electrode and electrolyte cost, high abundance of elements used.
C: Robustness, low electrode and electrolyte cost, and wide temperature range.
D: High energy density and good overall performance.
E: Low energy density and environmental issues.
\square
F: Low voltage and moderate energy density.
X: Good safety, high abundance of Mg.
Y: Electrolyte instability and high cost, low energy density and voltage.

Batter y	Reaction	EMF (V)	Theoretical energy density ($\mathrm{Wh} \mathrm{kg}^{\mathbf{- 1}}$)	Pros \& cons
Li-ion battery	$\begin{align*} & \mathrm{LiC}_{6} \\ & \mathrm{FePO}_{4} \\ & \stackrel{+}{\rightleftharpoons} \\ & \mathrm{LiFePO}_{4} \tag{2}\\ & 6 \mathrm{C} \end{align*}$	3.3	$\begin{gathered} M\left(\mathrm{LiC}_{6}+\mathrm{FePO}_{4}\right)=229.8 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\ \mathrm{TED}=3.3 \mathrm{~V} \cdot 1 \cdot 96485 \mathrm{~A} \cdot \mathrm{~s} \cdot \mathrm{~mol}^{-1} / 3.6 / 230 \mathrm{~g} \cdot \mathrm{~mol}^{-1}= \\ 385 \mathrm{~Wh}^{-1} \mathrm{~kg}^{-1} \end{gathered}$	$\begin{aligned} & \text { A \& } \\ & \text { D (2) } \end{aligned}$
Pb- acid battery	$\begin{aligned} & \mathrm{Pb}+\mathrm{PbO}_{2} \\ & +2 \mathrm{H}_{2} \mathrm{SO}_{4} \\ & \stackrel{\rightharpoonup}{\rightleftharpoons} \\ & 2 \mathrm{PbSO}_{4}+ \\ & 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	2.1	$\begin{gathered} \mathrm{M}\left(\mathrm{~Pb}+\mathrm{PbO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aqq})}\right)=(207.2+239.2+ \\ 2 \cdot 98.1 / 35 \cdot 65) \mathrm{g} / \mathrm{mol} \end{gathered}$ (1) $\text { TED }=2.1 \mathrm{~V} \cdot 2 \cdot 96485 \mathrm{~A} \cdot \mathrm{~s} \cdot \mathrm{~mol}^{-1} / 3.6 / 1007 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=$ $112 \mathrm{~Wh} \cdot \mathrm{~kg}^{-1}$ (2)	 E (2)
Mn-ion	$\begin{aligned} & \mathrm{Mn}_{0.2} \mathrm{~V}_{2} \mathrm{O}_{5} \cdot \\ & \mathrm{H}_{2} \mathrm{O} \\ & 0.8 \mathrm{Mn}^{2} \quad+ \\ & \mathrm{MnV}_{2} \mathrm{O}_{5} \cdot \mathrm{H} \\ & 2 \mathrm{O} \end{aligned}$	1.3	$\begin{gathered} M\left(\mathrm{MnV}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}\right)=254.8 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\ \mathrm{TED}=1.3 \mathrm{~V} \cdot 2 \cdot 0.8 \cdot 96485 \mathrm{~A} \cdot \mathrm{~s} \cdot \mathrm{~mol}^{-1} / 3.6 / 255 \\ \mathrm{~g} \cdot \mathrm{~mol}^{-1}=219 \mathrm{~Wh} \cdot \mathrm{~kg}^{-1} \end{gathered}$ (2)	B \& F (2)
Mg-ion	$\begin{aligned} & 2 \mathrm{Mg} \\ & \mathrm{Mo}_{6} \mathrm{~S}_{8} \\ & \stackrel{\rightharpoonup}{\rightleftharpoons} \\ & \mathrm{Mg}_{2} \mathrm{Mo}_{6} \mathrm{~S}_{8} \end{aligned}$	1.1	134	X, Y

Part II. Technetium - the lightest of unstable elements
2.2. Fill in the blanks in the text and add missing groups $\left(\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)$ to the structures below.

[^0]

99mTc undergoes gamma (1) decay of 140 (1) keV comparable to 20-150 keV X-ray range used in conventional radiography. Differently from the latter, detecting the ${ }^{99 \mathrm{~m} T \mathrm{~T}}$ radiation from within the patient's body in a gamma camera gives three (1)-dimensional images of tissues and organs. The imaging is taken before half of ${ }^{99 m}$ Tc decayed, i.e., within 6 (1) hours after administrating the radiopharmaceutical. ${ }^{99 m} T c$ radioactivity reduces to 1% of the initial activity in $40(2)$ hours. The radioactivity of ${ }^{99} \mathrm{Tc}$ is $3 \cdot 10^{-7}(1) \%$ of the initial activity of ${ }^{99 m} \mathrm{Tc}$. In most ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ radiopharmaceuticals, ${ }^{99 m} \mathrm{Tc}$ (eluted from a technetium-99m generator) is turned into a coordination compound with specific biochemical properties: diphosphonate (1) attaches to hydroxyapatite and is used to scan bones, tetrofosmin (1) penetrates lipid membranes and is used to scan the heart, exametazime (1) crosses the blood-brain barrier and is used to scan the brain.

carbonyl (1)
diphosphonate (1)
\square

exametazime (1)

With more targeted imaging and therapy, the future applications of ${ }^{99 m} \mathrm{mc}$ for labeling biomolecules will likely be diverse and far-reaching. Technetium carbonyl (1) is an essential precursor to specific coordination compounds; it contains two types of ligands - one is a good leaving group, and the other one is strongly bound to technetium.

Part III. Rhenium - an element of supermaterials

Rhenium is used in superalloys and catalysts. Rhenium chlorides are precursors for making catalytic coordination compounds. In reaction with chlorine, rhenium forms solid compound $\mathbf{A}(w \mathrm{cl}=48.77 \%)$, which thermally decomposes into molecular chloride $\mathbf{B}(w \mathrm{cl}=36.35 \%)$ and chlorine. Chloride \mathbf{A} is also formed in the decomposition of molecular chloride \mathbf{C}, which is unstable at room temperature. The coordination number of Re (including $\mathrm{Re}-\mathrm{Re}$ bonds) is the same in molecules of $\mathbf{A}\left[\mathrm{Cl}_{a} \operatorname{Re}(\mu-\mathrm{Cl})\right]_{2}, \mathbf{B}\left[\mathrm{Cl}_{b} \operatorname{Re}(\mu-\mathrm{Cl})\right]_{3}$, and \mathbf{C}, where μ denotes that chloride is bridging two rhenium atoms (Re-Cl-Re).
2.3. Draw structures of the $\boldsymbol{A}-\boldsymbol{C}$ molecules.

A (2)	B (3)	C (2)
	Extra point for the double $\operatorname{Re}-\operatorname{Re}$ bond	

\square
Rhenium possible applications in catalysis include reduction of CO_{2} to CO .
2.4. Fill in in the blanks (charges, reagents, and products) in the catalytic cycle illustrating the electrochemical reduction mechanism (with H^{+}and e^{-}).

Part IV. Bohrium - probably the most boring element in the Universe

Bohrium belongs to the family of superheavy elements, which could act as powerful nuclear fuel, for example, for future fission-propelled space missions. Isotopes with the magical number of protons (114) or neutrons (184) could theoretically have half-lives large enough to be used in nuclear reactors. The half-life of synthesized isotopes (2.9 s for ${ }^{271} \mathrm{Bh}, 8.8 \mathrm{~s}$ for ${ }^{272} \mathrm{Bh}$, and 54 s for $\left.{ }^{274} \mathrm{Bh}\right)$ shows a trend for stabilization $\left(\log T_{1 / 2}=a A^{1 / 6}+b\right)$ towards the "island of stability" near the double-magic ${ }^{298} \mathrm{~F}$.
1.5. Estimate the half-life (in years) of the most stable isotope of Bh. Make a prediction on whether bohrium would find any application in the future.

Half-life:
The most stable isotope ${ }^{291} \mathrm{Bh}$ has the magical number of neutrons. (1)

$$
T_{1 / 2}(291 \mathrm{Bh})=10^{\wedge}\left[a(291)^{1 / 6}+b\right] / 3600 \mathrm{~s} \cdot \mathrm{~h}^{-1} / 24 \mathrm{~h} \cdot \mathrm{~d}^{-1} / 365.25 \mathrm{~d} \cdot \mathrm{y}^{-1}=5-215 \text { years }(1)
$$

Where a and b can be obtained from the $\log T_{1 / 2} \sim Z A^{1 / 6}$ dependence. (2)
The lowest estimate is obtained with:

$$
\begin{aligned}
& a=\log (54 / 8.8) /\left(274^{1 / 6}-272^{1 / 6}\right)=253.36 \text { and } b=\log (54)-a 274^{1 / 6}=-643.96 \\
& \log T_{1 / 2}(291 \mathrm{Bh})=253.36 \cdot(291)^{1 / 6}-643.96=8.25 \Rightarrow T_{1 / 2}\left({ }^{(291} B h\right)=5.6 y
\end{aligned}
$$

The highest estimate is obtained with:

$$
\begin{aligned}
& a=\log (8.8 / 2.9) /\left(272^{1 / 6}-271^{1 / 6}\right)=308.61 \text { and } b=\log (8.8)-a 272^{1 / 6}=-784.61 \\
& \log T_{1 / 2}\left({ }^{291} \mathrm{Bh}\right)=308.61 \cdot(291)^{1 / 6}-784.61=9.83 \Rightarrow T_{1 / 2}\left({ }^{291} \mathrm{Bh}\right)=215 \mathrm{y}
\end{aligned}
$$

\square

Prediction:

Any meaningful answer is graded with 1 points.
The author's prediction is that the estimated half-life might even be suitable for applying ${ }^{291} \mathrm{Bh}$ as nuclear fuel. However, synthesis of such a heavy isotope would be complicated because the reacting isotopes have a lower neutron-to-proton ratio. That is the main present obstacle to the "island of stability". Suppose (somehow synthesized) ${ }^{297} \mathrm{Nh}$ (in the middle of the island) undergoes a series of 3α decays - the resulting ${ }^{285} \mathrm{Bh}$ is by 6 neutrons lighter than the targeted ${ }^{291} \mathrm{Bh}$ and would have a much shorter half-life. Thus, applications of bohrium seem illusive.

Problem No. 3 - Simple Surface Chemistry (10\% of total)

The surface coverage ($\boldsymbol{\theta}=\frac{N_{\text {occ }}}{N_{\text {max }}}$, where $\boldsymbol{N}_{\text {occ }}$ is number of occupied sites and $\boldsymbol{N}_{\text {max }}$ is maximal number of adsorption sites) dependence on pressure is described by adsorption isotherms. The most used adsorption isotherm is Langmuir adsorption isotherm. To derive the Langmuir isotherm, we consider the following rates for adsorption and desorption:

$$
\begin{gathered}
r_{a d}=k_{a d} p(1-\theta)^{n} \\
r_{d e s}=k_{d e s} \theta^{n}
\end{gathered}
$$

3.1. Assuming steady state show that the surface coverage $\boldsymbol{\theta}$ dependence on pressure \boldsymbol{p} and adsorption/desorption rate constant ratio $\left(\boldsymbol{\alpha}=\frac{k_{\text {ad }}}{k_{\text {des }}}\right)$ takes form $\boldsymbol{\theta}=\frac{(\alpha p)^{1 / n}}{1+(\alpha p)^{1 / n}}$.

In steady state $r_{a d}=r_{\text {des }}$, and so we can write $k_{a d} p(1-\theta)^{n}=k_{\text {des }} \theta^{n}$. (1pt)
Divide both sides by $k_{\text {des }}$ to yield $\alpha p(1-\theta)^{n}=\theta^{n}$. (1pt)
Take n'th root of both sides to yield $(\alpha p)^{1 / n}(1-\theta)=\theta$. (1pt)
Bring terms with θ to one side to yield $\theta\left(1+(\alpha p)^{1 / n}\right)=(\alpha p)^{1 / n} \quad(1 p t)$
Express θ to yield required expression. (1pt)

5 pts total
Additional information: Commonly the equation is written in form $\theta=\frac{(K p)^{1 / n}}{1+(K p)^{1 / n}}$, where K is the equilibrium constant; however, strictly speaking it is not correct as that would mean that K has units of $k \mathrm{~Pa}^{-1}$. Therefore, we instead introduce the parameter α which has the correct dimensions.

Further we will consider a special case - the non-dissociative adsorption - in which first order rate law is observed for adsorption and desorption ($\boldsymbol{n}=\mathbf{1}$).

In this case adsorption isotherm is
\square

$$
\theta=\frac{\alpha p}{1+\alpha p}
$$

However, in experiments we cannot measure occupied sites directly. Instead, we consider the volume of gas adsorbed \boldsymbol{V} versus volume of gas adsorbed at full coverage $\boldsymbol{V}_{\max }$ and therefore the resulting isotherm in terms of volumes is

$$
\theta=\frac{V}{V_{\max }}=\frac{\alpha p}{1+\alpha p}
$$

With simple algebra we can linearise the equation to yield that

$$
\frac{p}{V}=\frac{1}{\alpha V_{\max }}+\frac{1}{V_{\max }} p .
$$

In an experiment of CO adsorption on charcoal at 273 K the following plot was obtained. Solid dots show experimental datapoints, and the solid line shows best fit line.

3.2. Using the plot determine α and $V_{\text {max }}$.

Slope should yield $\frac{1}{V_{\max }}$ and using the plot we estimate the slope to be $\frac{1.38-1.2}{20}=9 \cdot 10^{-3}$ (1pt)
Therefore, $V_{\max }=1 / 9 \cdot 10^{-3}=111 \mathrm{~cm}^{3}(1 \mathrm{pt})$
Now from intercept we can obtain $\frac{1}{\alpha V_{\max }}=1.2$ (1pt)
Solving for α yields $\alpha=\frac{1}{111 * 1.2}=7.5 \mathrm{kPa}^{-1}(1 \mathrm{pt})$
4 pts total

Additional information: For the derivation of linearised form of equation refer to Atkins Physical Chemistry 9ed p833.
\square
An useful method to study kinetics of desorption and determine the desorption activation energy is thermal desorption spectroscopy (TDS). In this method sample is heated with linear change in temperature and the rate of desorption is observed. At the temperature where rapid desorption starts to occur, a peak in rate is observed, but after the sample is heated further the rate decreases due to lack of adsorbed species. Schematic representation of spectra observed in the studies is shown in figure - multiple peaks represent multiple adsorption sites with their respective desorption activation energies.

To extract desorption activation energy $\boldsymbol{E}_{\mathrm{d}}$, we start from the desorption rate equation and consider that desorption rate constant follows Arrhenius law, where v is the preexponential factor,

$$
-\frac{d \theta}{d t}=\boldsymbol{k}_{d e s} \boldsymbol{\theta}=v \mathrm{e}^{-\frac{\mathrm{E}_{d}}{\mathrm{~K}_{B} \mathrm{~T}}} \boldsymbol{\theta} .
$$

By considering that the temperature change during the experiment is $\boldsymbol{T}=\boldsymbol{T}_{\mathbf{0}}+\boldsymbol{\beta} \boldsymbol{t}$, where $\boldsymbol{\beta}$ is the heating rate, and integrating the rate law, one obtains the relation, where $\boldsymbol{T}_{\text {max }}$ is the temperature at the top of the peak.

$$
\frac{E_{d}}{k_{B} T_{\text {max }}^{2}}=\frac{v}{\boldsymbol{\beta}} e^{-\frac{E_{d}}{k_{B} T_{\text {max }}}} .
$$

3.3. Show that the expression can be rewritten as $\boldsymbol{E}_{\boldsymbol{d}}=\boldsymbol{k}_{\boldsymbol{B}} \boldsymbol{T}_{\max }\left(\boldsymbol{\operatorname { l n }}\left(\boldsymbol{v} \boldsymbol{T}_{\max } / \boldsymbol{\beta}\right)-\mathbf{3 . 6 4}\right)$. Hint: the quantity $\boldsymbol{\operatorname { l n }}\left(E_{d} / k_{B} \boldsymbol{T}_{\text {max }}\right) \approx \mathbf{3 . 6 4}$.

$$
\begin{aligned}
& \frac{E_{d}}{k_{B} T_{\max }^{2}}=v / \beta e^{-\frac{E_{\mathrm{d}}}{k_{B} T_{\max }}} \\
& \frac{\beta E_{d}}{v k_{B} T_{\max }^{2}}=e^{-\frac{E_{\mathrm{d}}}{k_{B} T_{\max }}} \\
& \ln \left(\frac{\beta E_{d}}{v k_{B} T_{\max }^{2}}\right)=-\frac{E_{\mathrm{d}}}{k_{B} T_{\max }}(1 \mathrm{pt}) \\
& E_{\mathrm{d}}=-k_{B} T_{\max } \ln \left(\frac{\beta E_{d}}{v k_{B} T_{\max }^{2}}\right) \\
& E_{\mathrm{d}}=k_{B} T_{\max } \ln \left(\frac{v k_{B} T_{\max }}{\beta E_{d}}\right)(1 \mathrm{pt}) \\
& E_{\mathrm{d}}=k_{B} T_{\max }\left(\ln \left(\frac{v T_{\max }}{\beta}\right)+\ln \left(\frac{k_{B} T_{\max }}{E_{d}}\right)\right)(1 \mathrm{pt}) \\
& E_{\mathrm{d}}=k_{B} T_{\max }\left(\ln \left(\frac{v T_{\max }}{\beta}\right)-3.64\right)(1 \mathrm{pt}) \\
& 4 \text { pts total }
\end{aligned}
$$

TDS experiment was performed to investigate desorption of ethylbenzene on pyrolytic graphite. Two peaks in the spectra were observed, one at $\mathbf{1 7 1 K}$, and one at $\mathbf{2 0 9} \boldsymbol{K}$. Peak at $209 \boldsymbol{K}$ corresponds to desorption from adsorption layer directly on the surface, while the peak at $\mathbf{1 7 1} K$ corresponds to desorption from further layers.
\square

3.4. Calculate the desorption activation energies (expressed in $\mathbf{k J ~ m o l}^{\mathbf{- 1}}$) for ethylbenzene desorption from pyrolytic graphite. Assume heating rate $\boldsymbol{\beta}=\mathbf{1} \mathbf{K ~ s}^{\mathbf{- 1}}$, preexponential factor $v=10^{12} s^{-\mathbf{1}}$.

Hint: the formula from 3.3 provided results in desorption activation energy per atom.

$$
\begin{aligned}
& E_{\mathrm{d}}=k_{B} T_{\max }\left(\ln \left(\frac{v T_{\max }}{\beta}\right)-3.64\right) \\
& E_{\mathrm{d}, \text { molar }}=R T_{\max }\left(\ln \left(\frac{v T_{\max }}{\beta}\right)-3.64\right)(1 \mathrm{pt}) \\
& =8.314 * 209\left(\ln \left(\frac{10^{12} * 209}{1}\right)-3.64\right)=51 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{pt}) \\
& \text { and } \\
& =8.314 * 171\left(\ln \left(\frac{10^{12} * 171}{1}\right)-3.64\right)=41 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{pt}) \\
& 3 \text { pts total }
\end{aligned}
$$

One of the method's shortcomings is that it relies on a good guess of the preexponential factor.
3.5. Calculate error in the predicted desorption activation energy for desorption at $\mathbf{2 0 9} \mathbf{K}$ if the actual preexponential factor is 1000 times larger.

$$
\begin{aligned}
& \Delta E_{\mathrm{d}}=R T_{\max } \ln \left(\frac{v_{\text {new }}}{v_{\text {old }}}\right)(1 \mathrm{pt}) \\
& =8.314 * 209 * \ln (1000)=12 \mathrm{~kJ} \mathrm{~mol}^{-1}(1 \mathrm{pt}) \\
& 2 \text { pts total }
\end{aligned}
$$

Problem No. 4 - Bromine goes hyper mode (10\% of total)

Bromine (III) reagents are fascinating compounds in the realm of organic chemistry due to their unique attributes. While their stability and high oxidizing power can make them difficult to handle, they have also served as tools for innovative synthetic conversions. In this problem, you will explore

synthesis of some hypervalent bromine (III) reagents (such as the one on the right), some of which have been investigated at the Latvian Institute of Organic Synthesis (LIOS).
Traditionally compounds like 2 have been synthesised from BrF_{3} and an aryl bromide 1 according to the following scheme:

4.1. Preparation of BrF_{3} through a chemical process is difficult since it involves using two dangerous compounds, Br_{2} and F_{2}, which require special safety measures. Additionally, the reaction produces two other substances that need to be separated using fractional distillation, which adds to the complexity of the process. Write the formulas for the two side products.

$\mathrm{BrF}, \mathrm{BrF}_{5}$

(2 pt. = 1 pt. each)
Another complication arises from the fact that BrF_{3} is highly reactive and can react not only with water (forming two acids and oxygen), but also other common solvents like acetonitrile $\mathrm{CH}_{3} \mathrm{CN}$ (yielding a fluoroalkane and 2 elementary substances) and even glass (yielding two gases and a brown liquid) at room temperature.
4.2. Write balanced equations of the reactions of BrF_{3} with a) water; b) acetonitrile; c) silicon dioxide.
a) $\mathrm{BrF}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HBr}+3 \mathrm{HF}+\mathrm{O}_{2}$
(4 pt. = 2 pt. for equation, 2 pt. for balancing)
b) $2 \mathrm{BrF}_{3}+2 \mathrm{CH}_{3} \mathrm{CN} \rightarrow \mathrm{Br}_{2}+2 \mathrm{CH}_{3} \mathrm{CF}_{3}+\mathrm{N}_{2}$
(4 pt. = 2 pt. for equation, 2 pt. for balancing)
c) $\mathrm{BrF}_{3}+3 \mathrm{SiO}_{2} \rightarrow \mathrm{Br}_{2}+3 \mathrm{SiF}_{4} \uparrow+3 \mathrm{O}_{2} \uparrow$
(4 pt. = 2 pt. for equation, 2 pt. for balancing)
4.3. Another complication arises from BrF_{3} 's ability to homolyse into radicals and promoting unwanted side reactions. Provide a radical mechanism (should consist of three separate radical reactions) of a potential fluorination of a generic alkane RCH_{3}. Note - any other trivalent bromine compounds are highly unlikely to form!
$\mathrm{BrF}_{3} \longrightarrow \mathrm{BrF}_{2} \longrightarrow \dot{\mathrm{~F}}$
$\mathrm{RCH}_{3}+\mathrm{BrF}_{2} \longrightarrow \mathrm{RCH}_{2}+\mathrm{BrF}+\mathrm{HF}$

(6 pt. $=2$ pt. each)
\square
4.4. Provide two more side products that might form from different termination steps.

$\mathrm{F}_{2} ; \mathrm{RCH}_{2} \mathrm{CH}_{2} \mathrm{R}$

(2 pt . = 1 pt. each, give points if $\mathrm{RCH}_{2} \mathrm{~F}$ here and other termination above)
A novel method of synthesizing compound 2 has been developed at LIOS, which involves oxidation of 1 in an undivided electrochemical cell:

1

HFIP

2
4.5. Since the reaction is happening in an undivided cell, there should be a counter reaction occurring on the opposite electrode. Give a balanced half-reaction equation. Circle the correct answers in the text. Hint: Balancing the oxidation half-reaction equation might help.

(6 pt. = 3 pt. for equation, 3 pt. for balancing)
The reaction is occurring on the _(a)_electrode and it is the_(b).
a) carbon / platinum
b) anode / cathode

In the reaction $\mathbf{1 \rightarrow 2}$, the bromine's hybridisation changes from_(c)_to (d)_, while it's geometry (according to VSEPR) changes from (e)_to (f)_with the angle O-Br-C in compound 2 being close to \qquad (g) .
c) $\mathrm{sp} / \mathrm{sp}^{2} / \mathrm{sp}^{3} / \mathrm{sp}^{3} \mathrm{~d} / \mathrm{sp}^{3} \mathrm{~d}^{2} / \mathrm{sp}^{3} \mathrm{~d}^{3}$
d) $\mathrm{sp} / \mathrm{sp}^{2} / \mathrm{sp}^{3} / \mathrm{sp}^{3} \mathrm{~d} / \mathrm{sp}^{3} \mathrm{~d}^{2} / \mathrm{sp}^{3} \mathrm{~d}^{3}$
e) linear / bent / T-shaped / tetrahedral / octahedral / trigonal bipyramidal
f) linear / bent / T-shaped / tetrahedral / octahedral / trigonal bipyramidal
g) $45^{\circ} / 60^{\circ} / 75^{\circ} / 90^{\circ} / 105^{\circ} / 120^{\circ}$
c) (7 pt. = 1 pt each)

The synthesis of compound 1a can be implemented starting from compound $\mathbf{3}$ according to the following scheme:
\square

4.6. Draw the structures of the intermediate compounds 4-6! Note: Brutto formula of compound 6 is $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrF}_{6} \mathrm{O}_{4}$!

4 (3 pt.)	5 (3 pt.)	6 (3 pt.)

The electrochemical modification is also appealing due to its non-intrusive nature to monitor the reaction's progress without external interference.

By interrupting the chemical reaction and conducting a cyclic voltammetry experiment, we can obtain a cyclic voltammogram that shows the relationship between current and the electric potential. Since the same redox event is being observed, the potential will be the same, enabling the comparison of the peak current i_{p} at various timepoints. The peak current i_{p} is proportional to the surface area A and the potential sweep rate v. This relationship is represented by the Randles-Sevcik equation:

$$
i_{p}=2.69 \cdot 10^{5} \cdot z^{\frac{3}{2}} \cdot A \cdot c \cdot D^{\frac{1}{2}} \cdot v^{\frac{1}{2}}
$$

, where $z=$ number of electrons transferred; $A=$ reactive surface area; $c=$ concentration; D = diffusion coefficient; $v=$ potential sweep rate
4.7. Assume that you have acquired peak currents of the oxidation of 1 before starting the experiment ($i_{p, 0}$) and at a certain timepoint $t\left(i_{p, t}\right)$. Derive an equation for calculating the yield of the reaction at a timepoint t.

```
(7 pt. total)
yield \(=\frac{n_{0}-n_{t}}{n_{0}}=1-\frac{n_{t}}{n_{0}} \mathbf{( 2 ~ p t . )}\)
\(\frac{i_{p, t}}{i_{p, 0}}=\frac{2.69 \cdot 10^{5} \cdot z^{\frac{3}{2}} \cdot A \cdot c_{t} \cdot D^{\frac{1}{2}} \cdot v^{\frac{1}{2}}}{2.69 \cdot 10^{5} \cdot z^{\frac{3}{2}} \cdot A \cdot c_{0} \cdot D^{\frac{1}{2}} \cdot v^{\frac{1}{2}}}=\frac{c_{t}}{c_{0}}\) (3 pt.)
\(\frac{n_{t}}{n_{0}}=\frac{c_{t} V}{c_{0} V}=\frac{c_{t}}{c_{0}}=\frac{i_{p, t}}{i_{p, 0}}\) (1 pt.)
yield \(=1-\frac{i_{p, t}}{i_{p, 0}}(\mathbf{1} \mathbf{p t .})\)
```

However, the Randles-Sevcik equation only applies to reversible systems and experimental evidence suggests that the functional group R could alter whether a particular compound for this reaction will undergo reversible oxidation, therefore, rendering this method unsuitable for monitoring reaction progress.
An alternative technique involves utilizing quantitative IR spectroscopy to monitor the formation of the $\mathrm{Br}-\mathrm{O}$ bond through measurement of its absorption (at a constant λ) using the Beer-Lambert equation. However, there are a few issues, namely: 1) ambiguity regarding the
\square
molar extinction coefficient and pathlength, 2) background absorption, 3) a synthetic chemist's laziness to calculate intermediate values.

These challenges may be overcome by 1) obtaining absorption values of the product at a known concentration, 2) acquiring background absorption, 3) deriving the equation for them.
4.8. Derive the equation for calculating the yield of the reaction $\mathbf{1 \rightarrow 2}$ and calculate it for a reaction with a starting concentration of $1, c_{0}=1 \mathrm{mM}$, where the measured absorption at a timepoint t is $A_{t}=0.986 \mathrm{AU}$, if the background absorption $A_{0}=0.054 \mathrm{AU}$ and the measured absorption of a 0.5 mM sample of 2 is $A_{x}=0.729 \mathrm{AU}$.

```
(11 pt. total)
    The Beer-Lambert equation for the following system would be: \(A=2 \epsilon c l+A_{0}\)
    the coefficient is because we form \(2 \mathrm{Br}-\mathrm{O}\) bonds for a single molecule of 2
    (Since later on the 2el will be subtracted, \(A=\epsilon c l+A_{0}\) is also acceptable; 2
    points)
    Thus, \(A_{t}=2 \epsilon c_{t} l+A_{0}\) and \(A_{x}=2 \epsilon c_{x} l+A_{0}\)
    Transforming : \(\frac{A_{t}-A_{0}}{c_{t}}=2 \epsilon l \& \frac{A_{\chi}-A_{0}}{c_{x}}=2 \epsilon l\); Combining \(\frac{A_{t}-A_{0}}{c_{t}}=\frac{A_{x}-A_{0}}{c_{x}}\) (2 pt.)
    Expressing \(c_{t}\) we get: \(c_{t}=\frac{c_{x}\left(A_{t}-A_{0}\right)}{A_{x}-A_{0}} \mathbf{( 2 ~ p t . )}\)
    yield \(=\frac{n_{t}}{n_{\text {theor. }}}=\frac{c_{t} V}{c_{\text {theor. } V}}=\frac{c_{t}}{c_{0}}\) (2 pt.)
    \(\frac{c_{t}}{c_{0}}=\frac{c_{x}\left(A_{t}-A_{0}\right)}{c_{0}\left(A_{x}-A_{0}\right)}(1 \mathrm{pt})=.\frac{0.5 \cdot 10^{-3}(0.986-0.054)}{1 \cdot 10^{-3}(0.729-0.054)}=0.69\) (2 pt.)
```


Problem No. 5 - Synthetic alkaloids (10\% of total)

Alkaloids crispine A and crispine B have been isolated as bioactive constituents from a plant Carduus crispus L. which has been used for the treatment of cold, stomachache and rheumatism. Significant cytotoxic activities of these compounds on some human-cancer cells have also been reported. Crispine A and crispine B both are very similar in structure, both belong to a family of pyrroloisoquinoline alkaloids.

Synthesis of enantiopure (-) crispine A started from aldehyde 1. Treatment of this aldehyde 1 with (R)-tert-butanesulfinamide in the presence of anhydrous CuSO_{4} afforded compound 2. Addition of allylmagnesium bromide to compound 2 at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the mixture of two diastereomers 3.1 (major) and 3.2 (minor). The diastereomeric mixture was easily separated by column chromatography and only compound 3.1 was used in further synthesis steps. Over next several steps compound 3.1 was finally converted to (-) crispine A as shown in the scheme below.

\square

1. $\mathrm{BH}_{3}, \mathrm{THF}$
2. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$

7
(-) Crispine A
DMF - dimethylformamide; THF - tetrahydrofuran
Boc:

Ms:
 TMS:

Tf:

5.1. Provide structures of compounds 2, 3.1 and 3.2 with stereochemical information.

4 pt
5.2. Provide structures of compounds 4, 5, $\mathbf{6}$ and 7 with stereochemical information.
5.3. Give absolute configuration of (-) crispine A stereocenter using R / S nomenclature.
S 2 pt

If the mixture of compounds 3.1 and 3.2 was used in the synthesis without separation, the liquid mixture of two enantiomers (-) crispine A and (+) crispine A would be finally obtained.
\square
This mixture had specific rotation of -72.8°. Enantiopure (-) crispine A has specific rotation of -91.0°.

Formula for enantiomeric excess calculation: $e e=\left(\omega_{1}-\omega_{2}\right) /\left(\omega_{1}+\omega_{2}\right)$
ω_{1} - fraction of one enantiomer in the mixture
ω_{2} - fraction of other enantiomer in the mixture
5.4. Calculate enantiomeric excess of this mixture of (-) crispine A and (+) crispine A. Calculate ratio of enantiomers in the mixture and clearly indicate which enantiomer is major and which is minor.

```
ee =-72.8/(-91)=0.8 -> 80% 3 pt
( }\mp@subsup{\omega}{1}{}-\mp@subsup{\omega}{2}{})/(\mp@subsup{\omega}{1}{}+\mp@subsup{\omega}{2}{})=0.8->\mp@subsup{\omega}{1/}{\prime}\mp@subsup{\omega}{2}{}=9 3 p
(-) crispine is major enantiomer; (+) crispine is minor enantiomer 2 pt
```

5.5. Choose correct statement(-s).
$\square(-)$ enantiomer is always (R) isomer
$\square(-)$ enantiomer is always (S) isomer(-) enantiomer always has positive specific rotation value

\square (-) enantiomer always has negative specific rotation value (4 p.)

There are no correct statements(4 pt.)
Synthesis of crispine B started from aldehyde 8. After several chemical transformations crispine B was obtained. It is known that crispine B is a salt whose cation has molecular formula $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$.

DMSO - dimethyl sulfoxide
${ }^{1} \mathrm{H}$ NMR spectral data of compounds 9 and crispine B:
Compound $9{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.74$ (br. s., 1 H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{dd}, \mathrm{J}=3.2$, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.62 (dd, J = 9.6, $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.42 (dd, J = 3.2, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.86-6.94 (m, 3H).

Crispine $\mathrm{B}^{1} \mathrm{H}$ NMR (deuterated MeOH) $\delta: 2.63$ ($\mathrm{q}, 2 \mathrm{H}$), 3.89 (t, 2H), 4.08 (s, 3H), 4.10 (s, 3 H), 4.91 (t, 2H), $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$.
\square
Meanings of abbreviations: s - singlet, br. s. - broad singlet, d - doublet, dd - doublet of doublets, t - triplet, q - quartet, m - multiplet.
5.6. Provide structures of compounds 9, 10, 11, 12 and crispine B. Stereochemical information is not required.

9	10
11	12
Crispine B	

Another alkaloid structurally very similar to crispine A and crispine B is sinopyrine B which is found in plant Sinomenium acutum. It can be synthesized from aldehyde 13.
\square

TBAF - tetrabutylammonium fluoride
 TFA:

${ }^{1} \mathrm{H}$ NMR spectral data of compound 14 :
Compound $14{ }^{1} \mathrm{H}$ NMR (deuterated DMSO) $\delta: 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.00$ (br. s., 1H).

5.7. Give structures of compounds 14, 15 and 21.

14	15	21

5.8. The reaction $16 \rightarrow \mathbf{1 7}$ is so called Pictet-Spengler Isoquinoline Synthesis reaction. Draw the mechanism of $16 \rightarrow 17$.
\square

5.9. One of the key steps in this synthesis is three-stage reaction $19 \rightarrow 20$ when pyrrole ring is formed. Everything starts with ylide formation after HCN removal. Then, cycloaddition reaction occurs. And finally, pyrrole ring is formed in presence of DDQ. Give correct resonance structure of most stable intermediate ylide which is formed after HCN removal and which actually participates in further reaction steps. Also give structure of compound which forms just after cycloaddition reaction (before DDQ starts acting).
Ylide:
5.10. Give name for cycloaddition reaction using two different systems by writing appropriate numbers instead of letters α, β, γ and δ. When written in parentheses (), numbers indicate amount of atoms in each reactant which participated in cycloaddition reaction. When written in brackets [], numbers indicate amount of electrons in each reactant which participated in cycloaddition reaction.

$(\alpha+\beta)$	$[\gamma+\delta]$
$\alpha=3$	$\gamma=4$
$\beta=2$	$\delta=2$

(8p.)
5.11. What is the role of $D D Q$ in this reaction? Choose correct answer.

\square Oxidizing agent (4p.)

Reducing agentCatalystInhibitor\square

Problem No. 6 - Toxic fungus among us (12\% of total)

Synthesis adapted from: M. T. Crimmins, Z. Wang, L. A. McKerlie. Tetrahedron Lett., 37(48): 8703-8706, 1996.

Phytoalexins are naturally occurring antimicrobial compounds, which are produced by plants in response to pathogens at the site of infection. In this way, they serve an important role in the general defence mechanism against plant diseases. Phytoalexins can counter the invading organism in a variety of different ways, including by delaying the maturation, disrupting metabolism, breaking down cell walls or inhibiting its reproduction.

Lubiminol is a spirocyclic phytoalexin first isolated from potato plants infected with a particular species of fungus (Phytophthora infestans or Glomeralla cingulata). Although lubiminol has bioactive properties itself, it is an intermediate in the biosynthetic pathway of more

lubiminol substantial and potent antifungal agents.

In this task, you will look into the highly stereoselective total synthesis of lubiminol utilising a radical cascade as the key step in constructing its spirocyclic core. The sequence began with a stereoselective aldol addition of ethyl acetate lithium enolate to acrolein, which gave the beta-hydroxyester A predominantly as its R-isomer. Propargylation with propargyl bromide in the presence of LDA then yielded \mathbf{B}, which in turn was converted into \mathbf{C} with an excess of methyl Grignard. Protection of \mathbf{C} as an acetone acetal and subsequent treatment with methyl chloroformate gave compound \mathbf{E}.

6.1. Draw the structures of $\boldsymbol{A}-\boldsymbol{E}$, taking stereochemistry into account.
C
\square
(s) Corrections (if needed)

2 points for every structure. One-time penalty of -1 point if structure is correct, but stereochemistry is incorrect and the mistake carries forward. -1 point for every new mistake.

The stereoselectivity of the formation of \mathbf{A} derives from the energetic differences in the two possible transition states and the outcome can be rationalised by the ZimmermanTraxler model. By this rationale, addition of the lithium enolate proceeds via a cyclic six-membered chair-like transition state, resemblant of the chair-conformation of cyclohexane (see figure). Stereochemical outcome is ultimately determined by the spatial arrangement of the electrophile in the transition state. The lowest energy

$H^{\text {a }} \quad \mathbf{H}^{\mathrm{a}}$ transition state is such where the electrophile's bulkiest substituent is positioned equatorially and the smallest substituent is positioned axially. In the figure, axial protons of $\mathrm{C}_{6} \mathrm{H}_{12}$ are denoted as H^{a} and equatorial protons as H^{e}.
6.2. Account for the stereochemistry of \boldsymbol{A} by applying the Zimmerman-Traxler model. Denote bonds which are being formed or broken with a dashed line (- --).

Lower energy TS: vinyl group is equatorial, H is axial

Correct arrangement of the electrophile and nucleophile (in chair conformation) - 3 points. Alternative correct depictions of the TS are equally valid and yield full points. Stating or showing that the vinyl group is equatorial in the TS and thus it is lower in energy than the other possible TS - 2 points.
\square
Next, compound \mathbf{E} was converted into enone \mathbf{F} via a formal (3+2) cycloaddition. For this purpose, a zinc homoenolate \mathbf{Z} was generated in situ from 2 equivalents of \mathbf{Y} and 1 equivalent of ZnCl_{2}. Note that 1 equivalent of \mathbf{Z} can react with up to 2 equivalents of \mathbf{E}. Compound \mathbf{Y} can be formed by treating \mathbf{X} with sodium and trapping the resulting alkoxide with trimethylsilyl chloride. It is known that \mathbf{Y} is cyclic, whereas \mathbf{X} and \mathbf{Z} are not. Irradiation of \mathbf{F} with UV light yielded \mathbf{G} and \mathbf{G}^{\prime} as the major and minor products, respectively. Upon deprotection and carbamothioate formation, compound \mathbf{H} was obtained.

6.3. Draw the structures of $\boldsymbol{X}, \boldsymbol{Y}, \mathbf{Z}, \boldsymbol{F}, \boldsymbol{G}$ and \mathbf{G}^{\prime}, taking stereochemistry into account.

X	Y	z
F	G	G'

2 points for X, 3 points for Y, Z, F, G and G'. One-time penalty of -1 point if structure is correct, but stereochemistry is incorrect and the mistake carries forward. $\mathbf{- 1}$ point for every new mistake.
6.4. Circle the correct classification for the pericyclic reaction $\boldsymbol{F} \rightarrow \boldsymbol{G}$.
\square
electrocyclisation / cycloaddition (2p.) / sigmatropic rearrangement / cycloreversion / cheletropic reaction / ene reaction / the correct answer is not listed
6.5. Circle the correct answer. Based on Woodward-Hoffman rules, reaction $\mathbf{F} \rightarrow \boldsymbol{G}$ is:

Conrotatory (2p.) / disrotatory / neither conrotatory nor disrotatory
Compound \mathbf{H} paved the way to the key step: a radical cascade which gave access to spirocycle I. First step of the cascade is a well-known name reaction.

6.6. Tick the correct answer. First step of the radical cascade is called a:

Barton-McCombie reaction (2p.)

Mitsunobu reactionWolff-Kishner reductionJulia olefinationCorey-Fuchs reaction6.7. Sketch the mechanism of the reaction $\boldsymbol{H} \rightarrow \boldsymbol{I}$ using curly fish-hook arrows to indicate the flow of electrons. Clearly indicate any by-products that are formed in the process.
\square

1. Decomposition of AIBN and formation of tributyltin radicals

2. Radical cascade

H

Decomposition of AIBN - 1 point.
H -abstraction from $\mathrm{Bu}_{3} \mathrm{SnH}$ by radicals formed from AIBN - 1 point.
Addition of tributyltin radical to carbamothioate - 1 point.
Deoxygenation-1 point.
Cyclobutane fragmentation and methyl radical formation-1 point total.
Cyclopropane formation-1 point.
Ring expansion to cyclohexanone - 1 point.
Regeneration of tributyltin radical at the final step - 1 point.
By-products ($\mathrm{N}_{2}, \mathrm{Me}_{2} \mathrm{CHCN}$, carbamothioate) - 1 point each, 3 points total.
Correct stereochemistry throughout the mechanism, including epimerisation at the beta-position of cyclohexanone - 1 point.
From compound I, precursor \mathbf{J} was prepared over 7 steps. Subjecting \mathbf{J} to conditions gave compound \mathbf{K} stereoselectively. This in turn was hydrogenated to give compound \mathbf{L}, in which all carbon-carbon bonds are saturated. From there, only two trivial steps remained to complete the synthesis.
\square

6.8. Select the appropriate reagent(s) for converting \boldsymbol{J} into \boldsymbol{K}. There is only one correct answer.i-Pr2NLi, MelMeMgBr(Me3O)BF4Me2CuLi (2p.)$\mathrm{Me}_{3} \mathrm{SI}, \mathrm{NaH}$
6.9. Draw the structures of \mathbf{K} - \mathbf{N}, taking stereochemistry into account.
COTBS

2 points for every structure. One-time penalty of -1 point if structure is correct, but stereochemistry is incorrect and the mistake carries forward. -1 point for every new mistake.

[^0]: ${ }^{99 m}$ Tc is one of the most frequently used isotopes in medicinal nuclear imaging. It is prepared in technetium-99m generators as a decay product of 99 Mo , obtained in a nuclear reactor in the fission of uranium-235: ${ }^{235} \mathrm{U}+{ }^{1} \mathrm{n} \rightarrow{ }^{134} \mathrm{Sn}(1)+{ }^{99} \mathrm{Mo}+{ }^{3} \mathrm{n}$. Obtained ${ }^{99} \mathrm{Mo}$ undergoes beta (1) decay into meta-stable isomers ${ }^{99 m} \mathrm{Tc}$ and ${ }^{99 m} 2 \mathrm{Tc}$ according to the generic decay diagram (with half-lifes and energy levels).

